Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption.
نویسندگان
چکیده
The planktonic larval stage is a critical component of life history in marine benthic species because it confers the ability to disperse, potentially connecting remote populations and leading to colonization of new sites. Larval-mediated connectivity is particularly intriguing in deep-sea hydrothermal vent communities, where the habitat is patchy, transient, and often separated by tens or hundreds of kilometers. A recent catastrophic eruption at vents near 9 degrees 50'N on the East Pacific Rise created a natural clearance experiment and provided an opportunity to study larval supply in the absence of local source populations. Previous field observations have suggested that established vent populations may retain larvae and be largely self-sustaining. If this hypothesis is correct, the removal of local populations should result in a dramatic change in the flux, and possibly species composition, of settling larvae. Fortuitously, monitoring of larval supply and colonization at the site had been established before the eruption and resumed shortly afterward. We detected a striking change in species composition of larvae and colonists after the eruption, most notably the appearance of the gastropod Ctenopelta porifera, an immigrant from possibly more than 300 km away, and the disappearance of a suite of species that formerly had been prominent. This switch demonstrates that larval supply can change markedly after removal of local source populations, enabling recolonization via immigrants from distant sites with different species composition. Population connectivity at this site appears to be temporally variable, depending not only on stochasticity in larval supply, but also on the presence of resident populations.
منابع مشابه
Reproductive traits of pioneer gastropod species colonizing deep- sea hydrothermal vents after an eruption
The colonization dynamics and life histories of pioneer species are vital components in understanding the early succession of nascent hydrothermal vents. The reproductive ecology of pioneer species at deep-sea hydrothermal vents may provide insight into their dispersal, population connectivity, and ability to colonize after disturbance. An opportunity to study the reproductive traits of two pio...
متن کاملDetecting the Influence of Initial Pioneers on Succession at Deep-Sea Vents
Deep-sea hydrothermal vents are subject to major disturbances that alter the physical and chemical environment and eradicate the resident faunal communities. Vent fields are isolated by uninhabitable deep seafloor, so recolonization via dispersal of planktonic larvae is critical for persistence of populations. We monitored colonization near 9°50'N on the East Pacific Rise following a catastroph...
متن کاملPersistent effects of disturbance on larval patterns in the plankton after an eruption on the East Pacific Rise
To predict how benthic communities will respond to disturbance, it is necessary to understand how disturbance affects the planktonic larval supply available to recolonize the area. Deep-sea hydrothermal vent fauna along the East Pacific Rise (EPR) experience frequent local extinctions due to tectonic and magmatic events, but the effects on regional larval abundance and diversity are unknown. We...
متن کاملAdvances in Taxonomy, Ecology, and Biogeography of Dirivultidae (Copepoda) Associated with Chemosynthetic Environments in the Deep Sea
BACKGROUND Copepoda is one of the most prominent higher taxa with almost 80 described species at deep-sea hydrothermal vents. The unique copepod family Dirivultidae with currently 50 described species is the most species rich invertebrate family at hydrothermal vents. METHODOLOGY/PRINCIPAL FINDINGS We reviewed the literature of Dirivultidae and provide a complete key to species, and map geogr...
متن کاملDispersal and colonisation processes at deep-sea vents
Organisms living in the hydrothermal environment are subject to great instability on various spatial and temporal scales (Haymon et al., 1993; Hessler et al., 1988; Lalou, 1991). Catastrophic and chaotic extinctions in populations (Tunnicliffe et al., 1990) forces vent animals to disperse continuously and colonise new active sites (Shank et al., 1998; Tunnicliffe et al., 1997). Population genet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 17 شماره
صفحات -
تاریخ انتشار 2010